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Abstract—Making bundle adjustment robust against the pres- number of feature correspondences detected between the two
ence of mismatchings has a significant importance in SfM views, and can be substituted by a small matrix of fixed size,
applications, as a small fraction of outliers can produce large without affecting the results of the optimizatidn [6].

errors in the estimated multiple view geometry. . . o .
In this paper we propose two modifications of GEA, an efficient Using GEA in a real SfM pipeline offers certain challenges.

structure-less bundle adjustment method which precomputes a FOr example, the optimization should cope with the presence
matching data reduction to speed up the epipolar cost error of outliers in the input set of feature correspondenceschvhi

optimization. The first one is a simple change in the error appear in practice due to matching failures, and the existen

expression which accelerates the data reduction significantly. The ¢ perceptual aliasing in the scene. To our knowledge, this
second is to incorporate a loss function in the cost that disables " ’
problem has not been addressed until now.

the influence of feature mismatchings during the optimization, . ) .
while it preserves the computational advantages of the data [N this paper we evaluate several improvements and appli-
reduction. cations for the GEA algorithm, which were initially propaise

We also describe an accurate structure-less incremental mo- jn [11]. We describe an alternative reduction which, unlike
tion estimation procedure which uses the modified GEA 0 o method used irl [12], does not require a time consuming

reduce initialization errors in the intermediate steps. The input . o .
matchings for the optimization are detected using standard two- matrix factorization to produce the reduced matrices. Irstmo

view feature matching techniques, demonstrating the robustnes 0ccasions GEA requires only a few iterations of the cost-opti
against mismatchings achieved with our proposal. mization to reach the optimal configuration. Hence, in peact

the data reduction usually takes a large time to compute, in
comparison with the time required by the optimization of the
Bundle adjustment (BA) [15,]3] is widely used to reduceeduced cost. For this reason, our proposal can consigerabl
initialization errors in the intermediate steps of increna¢ decrease the overall time required to obtain the optimakcam
Structure from Motion (SfM) applications. This operati@in poses.
most occasions crucial to obtain valid and accurate esomat ~ Along with this improvement, we describe a method to
for the camera poses and scene structure, as it prevents girevent the influence of feature mismatchings in the quality
buildup and improves the chance of convergence towards thfethe camera poses obtained with GEA. In principle this
valid reconstruction configuration. could be done by applying a loss function individually to the
However, using BA under certain circumstances is unpragpipolar residual contribution of each input matching ie th
tical, given the considerable computation cost of the reproptimized cost. For example, this approach is used in most
jection error optimization. For example, using BA in mediunglassical bundle adjustment methods, where the loss midi
to large scale reconstruction problems can be computdlfonaapplied to the residual of each measurement in the repioject
demanding for reduced performance devices such as smartor. However, using loss functions with a reduced cosbts n
phones or tablet PC's. straightforward, as residuals for different matchingsedestd
Several techniques have been proposed to alleviate thetween a given view pair are evaluated jointly in each term
problem. For example, using Preconditioned Conjugate Ga-the cost function.
dient (PCG)I[1] 2, 16] or the Schur complement trick [3] re- We can robustify such reduced cost using a loss function, as
duces the computational requirements of the cost optiiizat long as certain considerations are taken into account gl tiniz
Structure-less BA[17, 12, 8] achieve this by substituting t detection of the input image feature matchings. To dematestr
reprojection error by an alternative cost which does natlver  this, we propose an incremental motion estimation proedur
the structure parameters. that uses the modified version of GEA to obtain accurate
In [12] the authors described GEA, an efficient structuss-lecamera pose estimations from a set of input images. In this
BA method based on a cost defined on epipolar constraingsocedure we use classical image descriptor matching and
Much of the computational efficiency of this method is @ample consensus methods to detect feature corresposdence
consequence of reducing the matching information in a preptbetween the input images. It is well known that these methods
cessing operation. Each epipolar constraint defined bet@eeproduce mismatchings which are difficult to detect and elimi
view pair encodes the feature matching information in a datate. As we will demonstrate, the inclusion of the loss fiomct
matrix. This matrix has a variable size which depends on the the optimized cost will prevent the influence of these
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mismatchings, which are usually produced by the estimatismaller. The matriXJ can be obtained from U using different
of incorrect epipolar geometries. factorizations. With the Cholesky decompositiédh’ U =
LLT, the reduced matrix can be evaluatedlas- L7 Using
the SVD decompositior/ = XDV, the reduced matrix is
In SeCtiOI‘D] we describe GEA, and the Original data redU@‘ — DVT Once obtained' these reduced matrices can be
tion technique used to speed up the optimization. In selffibn reused in different iterations of the cost optimization.
we provide an alternative cost function which does not nequi
the matrix factorization to reduce the matching data. $acti Ill. SPEEDING UP THE DATA REDUCTION
[Vldiscusses how to robustify the cost optimization agaihet ~ The matrix factorization in the original data reduction
influence of feature mismatchings. In sectioh V we descrilbeethod requires a significant computation time, which we can
the incremental motion initialization method proposed. save by changing the expression of the GEA cost function in
Finally, sectiond"MI and"V]I provide experimental resultgquatior ]l to:
which demonstrate the performance of the new GEA imple-

A. Structure of this document

n—1 n

mentation, as well as the conclusions for these results.
Capa=)_ > e;ieq ()
Il. THE GEA OPTIMIZATION i=1 j=i

To improve the quality of the estimated camera poses, GEAThe evaluation time for each reduced term in both the new
optimizes the following cost function: and old expressions is approximately the same. Meanwhile,

L the reductionQ = UTU in the new expression does not

time consuming factorization. Furthermore, we ca

C _ ( Tt ) 1) require a . 9 U re,
GEA Z Z Z a4 P @ evaluate the matrix) efficiently by exploiting the inherent

i=1 j=i p+qeEM,j i
! redundancy of its elements. For example, we can use the

In this equationM;; = {p <> q} is the set of pairwise following summatory to obtain this matrix from the input
point correspondences detected between the input i@msl matchings inM:

j. Matrix Ejj is the following essential parametrization for the

camera poses of those two views: Q Z W ©)
= k k
1 k=1
El = _——__R;[C;—C,], Rl 2
Yoc; ¢ ©; lx @ In this expressionu is the DLT transformation for thé-th

R; and C; are the rotation and center for thieh camera. feature matching io\, as denoted in equatioh 4. The elements
The normalization factoil /||C; — C;|| prevents the conver- ?n ) are redundant because the product of many pairs of entries
gence of the cost optimization to the trivial incorrect ¢ N u produces the same value. For example, the elentents
C; = C; (with i # j). and(3,7) in matrix u;, ® uy (and in the accumulated matrix

The proposed cost can be rewritten into the followin§ as well) are equal:
compact form:

Uity = Uzly = quPy 7
n—1 n
Capa = Z Z el ULUijey; ©) Many entries in each matrigkuz can also be obtained
i=1 j—i by multiplying other elements in the matrix, which we can

evaluate beforehand. For example, the elenfént) can be

wheree;; is the vectorization of matrixs;;, andU;; is the  jp5iainaq by multiplying the element8, 7) and (6, 7):

DLT transformation of the matching data.wt;; [S]. Each row
vectoru in U;; is obtained from one of the feature matchings
(P2, Py, 1) < (G, gy, 1) IN M;; as follows: (usuz) (ugur) = (Pota) (Paty) = Podeqy = urus  (8)

w=( )7 @) We can exploit these facts to design an efficient evaluation
= \GePes 42Dy Go> QyPr: QyPy> dy> Pw> Py: code for theQ2 matrix, which performs the minimal number
A. Reduction of the data matrices of operations to evaluate each term in the summatory of

In [12] the authors suggested using the data matrix reducti§XPressiof.e.
of U;; proposed inl[6] to speed up the evaluation of the cost IV. ROBUSTIFICATION OF REDUCED COSTS
function in equationI3. Each matrix;; of size|M;;| x 9 in
this cost can be replaced byla matrix of size9 x 9 such
that:

Most SfM applications check the epipolar consistency of
the feature matchings detected between the input images,
before using them to compute the multiple view geometry.
This way they can reject a large number of mismatchings
and improve the quality of the results obtained. Batch SfM

The new cost is equivalent to the original, but the timapplications such as [14] use RANSAC to estimate the epipola
required for its evaluation and optimization is signifidgnt geometry, and reject outliers with a large epipolar redifira

vt =0"0



this geometry. Real-time SfM applications, such as the one &l

proposed inl[10], can check the epipolar consistency of non- +np
loop closing matchings with the camera poses estimated for
the key-frames.

In occasions, certain mismatchings survive this consisten tn e T
check. As long as the epipolar geometry estimated for a given :
view pair is correct, we can include the surviving outlierstie
GEA optimization without expecting a significant degradati
in the quality of the results obtained. These outliers will
have a small epipolar residual for the true camera pOEI%. 1. Plot for the ramp loss function used in the proposedstification

Conﬁgurat.ion- H_ence, they W”_l not p_enali;e the conver@engethod to reduce the influence of outliers in the reduced quimation.
of the optimization towards this configuration.

However, RANSAC can eventually estimate an invalid
epipolar geometry. For example, when the scene containsAs we will demonstrate in sectidn VI, in the case of batch
repeated structures, we can easily find an incorrect epipo&fM applications the robustified GEA can successfully deal
geometry which is supported by a large number of featuwdith mismatchings found in practice by image feature match-
matchings. In this case, some outliers with large residimals ing methods. In real-time SfM applications, the robusttfma
the true camera poses can survive the consistency check, uthnique can prevent motion estimation errors produced du
degrade the results obtained with GEA. to invalid loop closing evidence.

We can use the fact that these outliers have a high algebraic
epipolar residual error, to detect those view pairs which arV. INCREMENTAL STRUCTURELESS MOTION ESTIMATION

likely to contain them, and reduce their contribution to the We can use the new GEA implementation to develop a

cost error. The cost function in equatioh 5 can be rewrit®en 8tructure-less incremental motion estimation proceduhich
follows: obtains accurate camera poses from the pair-wise feature

matchings detected at the input images using feature géscri
Copa = Z O, (] Q5e4) (9) matching and RANSAC methods.

Qi;€0 The procedure starts by estimating the camera poses for two
views from the epipolar geometry of the feature matchings
detected between them. The orientation and location of new
camera poses are estimated in each iteration by averaging
relative rotations|[4] and camera centers| [13] obtainednfro
the epipolar geometries defined between these views, and

{T 7] < the views already initialized. At the end of each iteratian,
P, (r) = " (10) robustified GEA optimization corrects possible initiatipa
0 [5l=n errors produced by the averaging methods, and ensures con-
Figure[1 shows the plot for this function. In this cost vergence towards the valid optimal configuration. The pssce

represents the epipolar residual of one of the terms in tha GIEONtiNUEs until convergence, obtaining accurate camesago
cost function, and: is the number of correspondences used /thout merging pair-wise feature matchings into trackingr
estimate th&2 matrix in this term. Terms in the GEA cost with€Stimating the 3D location of points in the structure.
a large ®,,(r) value are likely to contain mismatchings ob-
tained from incorrectly estimated epipolar geometriesanis
to the robustification technigue, the residual contributaf We tested the performance of the techniques here proposed
these terms is ignored during the cost optimization. Meaim several experiments. In most of these experiments we used
while, terms with an average absolute residual smaller tharthe reconstruction data-sets referenced.in [1].
will usually contain matchings consistent with a valid epgy To evaluate the quality of the camera poses obtained with
geometry, and their contribution will remain unchangedtoy t the new GEA implementation, we triangulate the structure
loss function. points with these camera poses and the trackings contained
To include the loss function in our GEA implementatiornin the data-sets using a linear method [7]. We then measure
we did not modify the expression of the derivatives for thihe reprojection error with both the camera poses and these
original cost. Instead, we changed the way the cost functiestimated 3D scene points. The reprojection errors shown in
is evaluated during the optimization. In our case we usedttds section were evaluated as the norm of the measurement
Quasi-Newton method to optimize the cost, where we simpigsiduals for the image projections. For readability purposes,
ignored terms with large average epipolar residuals dutieg we scaled this value by a factor @000.0, divided by the
evaluation of the step equation. Solving the step equadind, square root of the number of elements in the residuals
updating the state vector was done as usual. vector.

—np4

In this expression®,,(r) is a ramp loss function which
vanishes the contribution of terms with a large averagecdgip
residual:

VI. RESULTS



The linear triangulation method is not completely reliable 2;22:
and can produce incorrect 3D points with large residualeund 8.04-
certain circumstances, even if the estimated camera pose;Ss!
are highly accurate. For this reason, when we evaluated thei.so
reprojection error we ignored the 10% of the measurements!2]
in each view with the largest reprojection residuals. This o.76|
way we ensure that the evaluated reprojection error is a fair0-38- /
measurement of the quality for the estimated camera poses°'°°’1
and not the 3D points obtained.

Our modified GEA implementation optimizes the cost func- £ Reduce [ Setup M Solve [ Update
tion from equatior{ B using the Gauss-Newton method. T%. 3. Time (in seconds) required by each iteration of theé opimization
step equation is solved using a preconditioned conjugateGEA (left) and SSBA (right) for the data-seubrovnik The times are
gradient. We used a symbolic math package to obtain ggparated into the following stageé®educe: data matching reduction using

. . . : . - . the technique proposed (GEA onlyetup: setting up the Gauss-Newton
efficientQ matrix evaluation code, which epr0|ts the 'nhererEEep equationSolve: solving the step equatiotpdate: update the state
redundancy of the terms in the summatory from equati@actor (SSBA only).

[B. The c++ implementation of the modified GEA algorithm

can be found her. The tests were executed on an Intel i3

(3.20GHz) with 4Gb of RAM memory. No GPU hardwarehe optimal GEA camera pose configuration 10 times larger
acceleration was used. than the residuals of the original matchings in the data-set
Hence, they simulate mismatchings obtained from incdyrect
estimated epipolar geometries. In these testsutlparameter

In a first set of experiments we measured the time requiréat the outlier robustification was set @) ~—*.
to reduce the data matrices with the method described inFigures[# and]5 show the accuracy of the camera poses
section[ll, and compared it with the time required by thebtained with GEA when we include these synthetic outliers i
method used inl[12]. Figurel 2 shows a comparison of bothe optimization. FigurEl4 compares the evolution of thererr
times, and demonstrates the significant speed increaseeofdb the fraction of synthetic mismatchings increases. Eithe

1
Number of views Number of views

A. Reduction time speed-up

proposed data reduction method. with a small or large number of outliers, the robustification
technique provides accurate camera poses with a configarati
f.901 oo very close to the optimal for the original set of matchings
1521 _ 664 (mismatching free).
g]fi gi; When the size of the problem grows, a few camera poses
80951 z 8415 tend to contain large errors despite the robustificationwHo
Eos 399 ever, the number of these incorrectly estimated cameraspose
g?g / ;gg is small, and the remaining camera poses are estimated accu-
0.00.¢ . . 0:002' ' S —— rate_ly. o ) ]
Views Views Figure [ shows the error distribution per view for the
GCholesky O~ Eigen Omega optimal GEA configurations when the fraction of synthetic

. o . L matchings is as large as 7%. Without the robustification
Fig. 2. Time (in seconds) required to reduce the matching rimébion for . .
the data-setslubrovnik (left) and venice (right) with two methods: the one t€Chnique, almost every camera pose estimated by GEA has
proposed in[6. 12] using both the Cholesky and eigen decoitigros and the @ large average reprojection error. With the robustificgtio
method described here (Omega), which does not require a mattorization. the error for most of the views obtained is small, almost
equivalent to the error for the camera poses estimated witho

Figure[3 compares the optimization time for the new GEAYNthetic mismatchings. Only a small fraction of the camera
implementation and SSBA, an efficient and freely availabRPSeS remain after the robustified GEA optimization with a
BA implementation[[9]. As can be seen in the figure, the daggnificant average reprojection error.
reduction operation can require a significant computatioe t . . . L
but is not the most expensive step in GEA anymore. C. Testing the incremental motion estimation

Figure[® shows dense reconstructions obtained from the
image se&medusa(m frames) andeuven castl€28 images)

In a second set of experiments we evaluated the reprojectigging the software package PM\B5ZThe camera poses for
error obtained with and without the outlier robustificatiech- the images were obtained with the incremental motion estima
nigue discussed here. We added to each data-set an ingreaim procedure proposed in sectibh V. The pair-wise feature
number of synthetic matchings in 10% of the view pairs. Theseatchings used to estimate these camera poses were obtained
matchings were designed to have an epipolar residual with

2Image sets can be found here: http://www.cs.unc.edu/ marc/
Thttp://perception.inf.um.es/gea Shttp://www.di.ens.fripmvs/

B. Robustness to outliers
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Fig. 4. Evolution of the reprojection error obtained with Sor the data-
setsdubrovnik-135(left) and venice-89Y(right) when we add in a 10% of the
view pairs an increasing fraction of mismatchings. The figumpgares the
error obtained with, and without the robustification tecjus.

40+ 401 b
361 | 361 ‘
821 | 321 ’
28 | 284 |
24 | 241 \
20 [ 201 |
164 ) 184 /
12 124 /
84 84 /,/
] )

4782148 22 276 a0
View

0
G B2 120 198 272 328 2424
View
groundtruth — robust —— non-robust

Fig. 5.  Distribution of average reprojection error per vieltained with
GEA for the data-setgubrovnik-356(left) and venice-427(right), arranged
from smallest to largest average error. Tg@undtruth configuration was
produced by GEA using the original (outlier free) matchingshe data-sets. o
The robust and non-robustconfigurations were obtained by adding a large
number of synthetic outliers to a 10% of the view pairs.
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Fig. 6. Top row: sample images from the data-setedusaand leuven
castle (top row). Middle and bottom: dense reconstructions obtained for

. . . these data-sets using the PMVS2 software, and the camera paséded by
using the software package Visual$fMvhich detects feature the incremental motion estimation procedure.

matchings using SIFT descriptors and checks their epipolar
consistency with RANSAC.
The high quality of these reconstructions demonstratg§sse contributions can improve the computational effiien
that the motion estimation methods proposed obtain acurgt fyture Sfm applications using structure-less BA.
camera poses, even when using input matchings which can
contain outliers, as long as they are consistent with theodgmi
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