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Abstract—Making bundle adjustment robust against the pres-
ence of mismatchings has a significant importance in SfM
applications, as a small fraction of outliers can produce large
errors in the estimated multiple view geometry.

In this paper we propose two modifications of GEA, an efficient
structure-less bundle adjustment method which precomputes a
matching data reduction to speed up the epipolar cost error
optimization. The first one is a simple change in the error
expression which accelerates the data reduction significantly. The
second is to incorporate a loss function in the cost that disables
the influence of feature mismatchings during the optimization,
while it preserves the computational advantages of the data
reduction.

We also describe an accurate structure-less incremental mo-
tion estimation procedure which uses the modified GEA to
reduce initialization errors in the intermediate steps. The input
matchings for the optimization are detected using standard two-
view feature matching techniques, demonstrating the robustness
against mismatchings achieved with our proposal.

I. I NTRODUCTION

Bundle adjustment (BA) [15, 3] is widely used to reduce
initialization errors in the intermediate steps of incremental
Structure from Motion (SfM) applications. This operation is in
most occasions crucial to obtain valid and accurate estimations
for the camera poses and scene structure, as it prevents error
buildup and improves the chance of convergence towards the
valid reconstruction configuration.

However, using BA under certain circumstances is unprac-
tical, given the considerable computation cost of the repro-
jection error optimization. For example, using BA in medium
to large scale reconstruction problems can be computationally
demanding for reduced performance devices such as smart-
phones or tablet PC’s.

Several techniques have been proposed to alleviate this
problem. For example, using Preconditioned Conjugate Gra-
dient (PCG) [1, 2, 16] or the Schur complement trick [3] re-
duces the computational requirements of the cost optimization.
Structure-less BA [17, 12, 8] achieve this by substituting the
reprojection error by an alternative cost which does not involve
the structure parameters.

In [12] the authors described GEA, an efficient structure-less
BA method based on a cost defined on epipolar constraints.
Much of the computational efficiency of this method is a
consequence of reducing the matching information in a prepro-
cessing operation. Each epipolar constraint defined between a
view pair encodes the feature matching information in a data
matrix. This matrix has a variable size which depends on the

number of feature correspondences detected between the two
views, and can be substituted by a small matrix of fixed size,
without affecting the results of the optimization [6].

Using GEA in a real SfM pipeline offers certain challenges.
For example, the optimization should cope with the presence
of outliers in the input set of feature correspondences, which
appear in practice due to matching failures, and the existence
of perceptual aliasing in the scene. To our knowledge, this
problem has not been addressed until now.

In this paper we evaluate several improvements and appli-
cations for the GEA algorithm, which were initially proposed
in [11]. We describe an alternative reduction which, unlike
the method used in [12], does not require a time consuming
matrix factorization to produce the reduced matrices. In most
occasions GEA requires only a few iterations of the cost opti-
mization to reach the optimal configuration. Hence, in practice
the data reduction usually takes a large time to compute, in
comparison with the time required by the optimization of the
reduced cost. For this reason, our proposal can considerably
decrease the overall time required to obtain the optimal camera
poses.

Along with this improvement, we describe a method to
prevent the influence of feature mismatchings in the quality
of the camera poses obtained with GEA. In principle this
could be done by applying a loss function individually to the
epipolar residual contribution of each input matching in the
optimized cost. For example, this approach is used in most
classical bundle adjustment methods, where the loss function is
applied to the residual of each measurement in the reprojection
error. However, using loss functions with a reduced cost is not
straightforward, as residuals for different matchings detected
between a given view pair are evaluated jointly in each term
of the cost function.

We can robustify such reduced cost using a loss function, as
long as certain considerations are taken into account during the
detection of the input image feature matchings. To demonstrate
this, we propose an incremental motion estimation procedure
that uses the modified version of GEA to obtain accurate
camera pose estimations from a set of input images. In this
procedure we use classical image descriptor matching and
sample consensus methods to detect feature correspondences
between the input images. It is well known that these methods
produce mismatchings which are difficult to detect and elimi-
nate. As we will demonstrate, the inclusion of the loss function
in the optimized cost will prevent the influence of these

mailto:alrl1@um.es


mismatchings, which are usually produced by the estimation
of incorrect epipolar geometries.

A. Structure of this document

In section II we describe GEA, and the original data reduc-
tion technique used to speed up the optimization. In sectionIII
we provide an alternative cost function which does not require
the matrix factorization to reduce the matching data. Section
IV discusses how to robustify the cost optimization againstthe
influence of feature mismatchings. In section V we describe
the incremental motion initialization method proposed.

Finally, sections VI and VII provide experimental results
which demonstrate the performance of the new GEA imple-
mentation, as well as the conclusions for these results.

II. T HE GEA OPTIMIZATION

To improve the quality of the estimated camera poses, GEA
optimizes the following cost function:

CGEA =

n−1
∑

i=1

n
∑

j=i

∑

p↔q∈Mij

(

qTE†
ijp

)2

(1)

In this equationMij = {p ↔ q} is the set of pairwise
point correspondences detected between the input viewsi and
j. Matrix E†

ij is the following essential parametrization for the
camera poses of those two views:

E†
ij =

1

‖Cj −Ci‖
Rj [Cj −Ci]× RT

i (2)

Ri andCi are the rotation and center for thei-th camera.
The normalization factor1/‖Cj − Ci‖ prevents the conver-
gence of the cost optimization to the trivial incorrect solution
Ci = Cj (with i 6= j).

The proposed cost can be rewritten into the following
compact form:

CGEA =
n−1
∑

i=1

n
∑

j=i

eTijU
T
ijUijeij (3)

whereeij is the vectorization of matrixE†
ij , andUij is the

DLT transformation of the matching data inMij [5]. Each row
vectoru in Uij is obtained from one of the feature matchings
(px, py, 1) ↔ (qx, qy, 1) in Mij as follows:

u = (qxpx, qxpy, qx, qypx, qypy, qy, px, py, 1)
T (4)

A. Reduction of the data matrices

In [12] the authors suggested using the data matrix reduction
of Uij proposed in [6] to speed up the evaluation of the cost
function in equation 3. Each matrixUij of size |Mij | × 9 in
this cost can be replaced by ãU matrix of size9 × 9 such
that:

UTU = ŨT Ũ

The new cost is equivalent to the original, but the time
required for its evaluation and optimization is significantly

smaller. The matrix̃U can be obtained from U using different
factorizations. With the Cholesky decompositionUTU =
LLT , the reduced matrix can be evaluated asŨ = LT Using
the SVD decompositionU = XDV T , the reduced matrix is
Ũ = DV T . Once obtained, these reduced matrices can be
reused in different iterations of the cost optimization.

III. SPEEDING UP THE DATA REDUCTION

The matrix factorization in the original data reduction
method requires a significant computation time, which we can
save by changing the expression of the GEA cost function in
equation 1 to:

CGEA =
n−1
∑

i=1

n
∑

j=i

eTijΩijeij (5)

The evaluation time for each reduced term in both the new
and old expressions is approximately the same. Meanwhile,
the reductionΩ = UTU in the new expression does not
require a time consuming factorization. Furthermore, we can
evaluate the matrixΩ efficiently by exploiting the inherent
redundancy of its elements. For example, we can use the
following summatory to obtain this matrix from the input
matchings inM:

Ω =

|M|
∑

k=1

uk ⊗ uk (6)

In this expressionuk is the DLT transformation for thek-th
feature matching inM, as denoted in equation 4. The elements
in Ω are redundant because the product of many pairs of entries
in u produces the same value. For example, the elements(1, 9)
and (3, 7) in matrix uk ⊗ uk (and in the accumulated matrix
Ω as well) are equal:

u1u9 = u3u7 = qxpx (7)

Many entries in each matrixuku
T
k can also be obtained

by multiplying other elements in the matrix, which we can
evaluate beforehand. For example, the element(1, 4) can be
obtained by multiplying the elements(3, 7) and (6, 7):

(u3u7) (u6u7) = (pxqx) (pxqy) = p2xqxqy = u1u4 (8)

We can exploit these facts to design an efficient evaluation
code for theΩ matrix, which performs the minimal number
of operations to evaluate each term in the summatory of
expression 6.

IV. ROBUSTIFICATION OF REDUCED COSTS

Most SfM applications check the epipolar consistency of
the feature matchings detected between the input images,
before using them to compute the multiple view geometry.
This way they can reject a large number of mismatchings
and improve the quality of the results obtained. Batch SfM
applications such as [14] use RANSAC to estimate the epipolar
geometry, and reject outliers with a large epipolar residual for



this geometry. Real-time SfM applications, such as the one
proposed in [10], can check the epipolar consistency of non-
loop closing matchings with the camera poses estimated for
the key-frames.

In occasions, certain mismatchings survive this consistency
check. As long as the epipolar geometry estimated for a given
view pair is correct, we can include the surviving outliers in the
GEA optimization without expecting a significant degradation
in the quality of the results obtained. These outliers will
have a small epipolar residual for the true camera pose
configuration. Hence, they will not penalize the convergence
of the optimization towards this configuration.

However, RANSAC can eventually estimate an invalid
epipolar geometry. For example, when the scene contains
repeated structures, we can easily find an incorrect epipolar
geometry which is supported by a large number of feature
matchings. In this case, some outliers with large residualsfor
the true camera poses can survive the consistency check, and
degrade the results obtained with GEA.

We can use the fact that these outliers have a high algebraic
epipolar residual error, to detect those view pairs which are
likely to contain them, and reduce their contribution to the
cost error. The cost function in equation 5 can be rewritten as
follows:

CGEA =
∑

Ωij∈O

Φ|Mij |

(

eTijΩijeij
)

(9)

In this expressionΦn(r) is a ramp loss function which
vanishes the contribution of terms with a large average epipolar
residual:

Φn(r) =

{

r | r
n
| < µ

0 | r
n
| ≥ µ

(10)

Figure 1 shows the plot for this function. In this costr
represents the epipolar residual of one of the terms in the GEA
cost function, andn is the number of correspondences used to
estimate theΩ matrix in this term. Terms in the GEA cost with
a largeΦn(r) value are likely to contain mismatchings ob-
tained from incorrectly estimated epipolar geometries. Thanks
to the robustification technique, the residual contribution of
these terms is ignored during the cost optimization. Mean-
while, terms with an average absolute residual smaller thanµ
will usually contain matchings consistent with a valid epipolar
geometry, and their contribution will remain unchanged by the
loss function.

To include the loss function in our GEA implementation
we did not modify the expression of the derivatives for the
original cost. Instead, we changed the way the cost function
is evaluated during the optimization. In our case we used a
Quasi-Newton method to optimize the cost, where we simply
ignored terms with large average epipolar residuals duringthe
evaluation of the step equation. Solving the step equation,and
updating the state vector was done as usual.

Fig. 1. Plot for the ramp loss function used in the proposed robustification
method to reduce the influence of outliers in the reduced cost optimization.

As we will demonstrate in section VI, in the case of batch
SfM applications the robustified GEA can successfully deal
with mismatchings found in practice by image feature match-
ing methods. In real-time SfM applications, the robustification
technique can prevent motion estimation errors produced due
to invalid loop closing evidence.

V. I NCREMENTAL STRUCTURE-LESS MOTION ESTIMATION

We can use the new GEA implementation to develop a
structure-less incremental motion estimation procedure,which
obtains accurate camera poses from the pair-wise feature
matchings detected at the input images using feature descriptor
matching and RANSAC methods.

The procedure starts by estimating the camera poses for two
views from the epipolar geometry of the feature matchings
detected between them. The orientation and location of new
camera poses are estimated in each iteration by averaging
relative rotations [4] and camera centers [13] obtained from
the epipolar geometries defined between these views, and
the views already initialized. At the end of each iteration,a
robustified GEA optimization corrects possible initialization
errors produced by the averaging methods, and ensures con-
vergence towards the valid optimal configuration. The process
continues until convergence, obtaining accurate camera poses
without merging pair-wise feature matchings into trackings, or
estimating the 3D location of points in the structure.

VI. RESULTS

We tested the performance of the techniques here proposed
in several experiments. In most of these experiments we used
the reconstruction data-sets referenced in [1].

To evaluate the quality of the camera poses obtained with
the new GEA implementation, we triangulate the structure
points with these camera poses and the trackings contained
in the data-sets using a linear method [7]. We then measure
the reprojection error with both the camera poses and these
estimated 3D scene points. The reprojection errors shown in
this section were evaluated as theL2 norm of the measurement
residualsr for the image projections. For readability purposes,
we scaled this value by a factor of1000.0, divided by the
square root of the number of elementsnr in the residuals
vector.



The linear triangulation method is not completely reliable,
and can produce incorrect 3D points with large residuals under
certain circumstances, even if the estimated camera poses
are highly accurate. For this reason, when we evaluated the
reprojection error we ignored the 10% of the measurements
in each view with the largest reprojection residuals. This
way we ensure that the evaluated reprojection error is a fair
measurement of the quality for the estimated camera poses,
and not the 3D points obtained.

Our modified GEA implementation optimizes the cost func-
tion from equation 9 using the Gauss-Newton method. The
step equation is solved using a preconditioned conjugate
gradient. We used a symbolic math package to obtain an
efficientΩ matrix evaluation code, which exploits the inherent
redundancy of the terms in the summatory from equation
6. The c++ implementation of the modified GEA algorithm
can be found here1. The tests were executed on an Intel i3
(3.20GHz) with 4Gb of RAM memory. No GPU hardware
acceleration was used.

A. Reduction time speed-up

In a first set of experiments we measured the time required
to reduce the data matrices with the method described in
section III, and compared it with the time required by the
method used in [12]. Figure 2 shows a comparison of both
times, and demonstrates the significant speed increase of the
proposed data reduction method.

Fig. 2. Time (in seconds) required to reduce the matching information for
the data-setsdubrovnik (left) and venice(right) with two methods: the one
proposed in [6, 12] using both the Cholesky and eigen decompositions, and the
method described here (Omega), which does not require a matrix factorization.

Figure 3 compares the optimization time for the new GEA
implementation and SSBA, an efficient and freely available
BA implementation [9]. As can be seen in the figure, the data
reduction operation can require a significant computation time,
but is not the most expensive step in GEA anymore.

B. Robustness to outliers

In a second set of experiments we evaluated the reprojection
error obtained with and without the outlier robustificationtech-
nique discussed here. We added to each data-set an increasing
number of synthetic matchings in 10% of the view pairs. These
matchings were designed to have an epipolar residual with

1http://perception.inf.um.es/gea

Fig. 3. Time (in seconds) required by each iteration of the cost optimization
in GEA (left) and SSBA (right) for the data-setdubrovnik. The times are
separated into the following stages.Reduce: data matching reduction using
the technique proposed (GEA only).Setup: setting up the Gauss-Newton
step equation.Solve: solving the step equation.Update: update the state
vector (SSBA only).

the optimal GEA camera pose configuration 10 times larger
than the residuals of the original matchings in the data-set.
Hence, they simulate mismatchings obtained from incorrectly
estimated epipolar geometries. In these tests theµ parameter
for the outlier robustification was set to10−4.

Figures 4 and 5 show the accuracy of the camera poses
obtained with GEA when we include these synthetic outliers in
the optimization. Figure 4 compares the evolution of the error
as the fraction of synthetic mismatchings increases. Either
with a small or large number of outliers, the robustification
technique provides accurate camera poses with a configuration
very close to the optimal for the original set of matchings
(mismatching free).

When the size of the problem grows, a few camera poses
tend to contain large errors despite the robustification. How-
ever, the number of these incorrectly estimated camera poses
is small, and the remaining camera poses are estimated accu-
rately.

Figure 5 shows the error distribution per view for the
optimal GEA configurations when the fraction of synthetic
matchings is as large as 7%. Without the robustification
technique, almost every camera pose estimated by GEA has
a large average reprojection error. With the robustification,
the error for most of the views obtained is small, almost
equivalent to the error for the camera poses estimated without
synthetic mismatchings. Only a small fraction of the camera
poses remain after the robustified GEA optimization with a
significant average reprojection error.

C. Testing the incremental motion estimation

Figure 6 shows dense reconstructions obtained from the
image sets2 medusa(19 frames) andleuven castle(28 images)
using the software package PMVS23. The camera poses for
the images were obtained with the incremental motion estima-
tion procedure proposed in section V. The pair-wise feature
matchings used to estimate these camera poses were obtained

2Image sets can be found here: http://www.cs.unc.edu/˜marc/
3http://www.di.ens.fr/pmvs/
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Fig. 4. Evolution of the reprojection error obtained with GEA for the data-
setsdubrovnik-135(left) andvenice-89(right) when we add in a 10% of the
view pairs an increasing fraction of mismatchings. The figure compares the
error obtained with, and without the robustification technique.

Fig. 5. Distribution of average reprojection error per viewobtained with
GEA for the data-setsdubrovnik-356(left) and venice-427(right), arranged
from smallest to largest average error. Thegroundtruth configuration was
produced by GEA using the original (outlier free) matchings in the data-sets.
The robust and non-robustconfigurations were obtained by adding a large
number of synthetic outliers to a 10% of the view pairs.

using the software package VisualSfM4, which detects feature
matchings using SIFT descriptors and checks their epipolar
consistency with RANSAC.

The high quality of these reconstructions demonstrates
that the motion estimation methods proposed obtain accurate
camera poses, even when using input matchings which can
contain outliers, as long as they are consistent with the epipolar
geometry of the valid camera poses.

VII. C ONCLUSIONS

We proposed a modification of the cost function expression
to speed up the algebraic data reduction in structure-less
BA methods. We have also discussed how to include a loss
function in the cost of these methods, while keeping the com-
putational advantages of the data reduction. In combination
with the adequate image feature matching detection, the loss
function can prevent the influence of mismatchings in the cost
optimization, ensuring that we obtain accurate camera poses.

We have also introduced a structure-less motion estimation
method, which can be used in SfM applications to initialize
the camera poses efficiently. We demonstrated these results
with experiments using both synthetic and real data, and hope

4http://homes.cs.washington.edu/˜ccwu/vsfm/

Fig. 6. Top row: sample images from the data-setsmedusaand leuven
castle (top row). Middle and bottom: dense reconstructions obtained for
these data-sets using the PMVS2 software, and the camera poses provided by
the incremental motion estimation procedure.

these contributions can improve the computational efficiency
of future SfM applications using structure-less BA.
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