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Abstract

In this paper we describe a highly efficient and scalable
real-time camera motion estimation system. Instead of Bun-
dle Adjustment, this system uses Global Epipolar Adjust-
ment (GEA) [11] to correct bootstrapping and loop-closing
errors during the camera tracking process. We propose
a modification of the GEA algorithm to obtain a signifi-
cant speed-up in the optimization, without sacrificing loop-
closing error correction performance.

As a result, our motion estimation system features in-
creased performance and scalability. In addition, it can
perform long-term live motion estimation without explicitly
maintaining the whole 3D structure. The system stores only
the 3D location for the most recently detected features, to
resect the camera pose for new input frames.

1. Introduction
Real-time SfM techniques obtain a sparse reconstruction

and the camera poses corresponding to certain key-frames
from an input video sequence. This reconstruction is usu-
ally the starting point of live dense reconstruction algo-
rithms in systems such as [10].

During the reconstruction process Bundle Adjustment
(BA) [12] is used to correct bootstrapping and loop-closing
errors, improving the estimated camera poses and 3D
points. This is generally required in SfM systems to pre-
vent long-term camera tracking failures [5]. More impor-
tant, it increases the reconstruction accuracy, so that dense
algorithms can obtain better reconstructions.

GEA [11] is a multiple-view camera pose optimization
algorithm which minimizes the algebraic errors defined be-
tween pairs of views in the reconstruction. Gross errors
are corrected for the estimated camera poses with a signifi-
cantly smaller computational cost than BA.

Experimental evidence shows that taking certain precau-
tions, the optimization of the algebraic error generally pro-
vides camera poses remarkably close to the optimal geo-
metrical error. In this paper we describe a real-time SfM

system which uses GEA as a stand-alone error correction
technique to perform an accurate live camera tracking.

By omitting the BA refinement an interesting theoretical
result is obtained: there is no need to store and update the
whole 3D structure during the reconstruction process to cor-
rect the initialization and drift errors in the camera tracking.
Our SfM system uses a small fraction of the 3D points only
to resect the camera poses for new input frames.

The whole 3D structure can be estimated with a simple
linear triangulation when it is required; for example to boot-
strap a dense reconstruction process. As demonstrated in
[11] this linear structure estimation is very accurate when
the camera poses are sufficiently close to the optimal con-
figuration.

To satisfy real-time constraints, common SfM systems
must apply BA either limited to the most recent key-frames
[5], or performed in a thread separated from the live camera
tracking process [8]. The first approach cannot correctly
eliminate loop-closing errors due to dead reckoning, be-
cause the correction should involve a large number (if not
all) of the camera poses.

The second approach has practical limitations regarding
the number of views. Bundle Adjustment can correct only
a few hundred key-frames on commodity hardware, while
keeping up with the real-time camera tracking process. As
the map grows, BA will not be able to correct the recon-
struction before new camera poses are resected, so the prob-
abilities of tracking failure increase significantly.

A possible solution is to use a GPU implementation of
BA [13] to speed up the map optimization. This can be
inconvenient if the GPU is required for another task, such as
the dense reconstruction. In this case the BA optimization
and the dense reconstruction algorithm must share the high-
performance hardware, and the overall performance speed
of the application can decrease significantly.

Our SfM system implements a mixed approach to real-
time map optimization. On one hand, GEA corrects the
camera poses of the n key-frames most recently added to
the reconstruction. On the other hand, a modified version of
GEA optimizes the whole set of camera poses in the recon-



struction when new loop-closing information is detected, to
correct possible camera drift errors.

In this paper we introduce and describe this GEA mod-
ification, which can accelerate the loop-closing correction
without sacrificing significant error correction performance.

This technique is suitable for real-time SfM and does not
discards views in the optimization. Our initial experiments
show that it improves the scalability of the loop closing cor-
rection, in a way that the running time grows almost linear
with the number of views.

The proposed tracking system is more scalable and ef-
ficient than other alternatives based on real-time SfM tech-
niques. It provides globally optimized camera poses, ac-
curate enough for tasks such as augmented reality, or live
dense reconstruction.

2. Global Epipolar Adjustment
Like Bundle Adjustment, the Global Epipolar Adjust-

ment is a technique for map error correction. Instead of
optimizing the geometrical reprojection error as BA, GEA
optimizes the algebraic residuals corresponding to the fun-
damental relationships defined between pairs of views in the
reconstruction. Assuming a calibrated scenario, the expres-
sion for the GEA error function is the following:

Cge =
∑
i

∑
j 6=i

∑
k∈Pij

(xik Eij xjk)
2 (1)

where: Pij contains the indexes for set of points which
are visible at both views i and j; xik and xjk represent the
measured projections of the 3D point k at images i and j;
and Eij is the essential matrix that models the epipolar ge-
ometry defined between the pair of views i and j. This ma-
trix can be evaluated for views i and j from their camera
pose orientations Ri, Rj and centers Ti, Tj :

Eij = Ri

[
Tj − Ti
||Tj − Ti||

]
×
RT

j (2)

The algebraic error in expression 1 can be conveniently
rewritten to:

Ce =
∑
i

∑
j 6=i

‖Aijeij‖2 (3)

where: eij is a vectorized version of the matrix Eij ; and
Aij is the measurement matrix corresponding to the point
matchings detected between the views i and j (equation 8
in [14]).

Each measurement matrix Aij in expression 3 can be re-
placed by a reduced measurement matrix of size 9 × 9 [7].
The GEA cost error obtained is mathematically equivalent
to the original, and its optimization is significantly faster.

Using a convenient coordinate normalization as de-
scribed in [6], and assuming the essential matrix expression

2, the camera poses obtained by optimizing the algebraic
error are very similar to those corresponding to the optimal
geometric error for the two-views case [7].

As for BA, Levenberg-Marquardt is adequate to optimize
the cost error function for GEA. Most of the performance
improvements obtained during years of research for the LM
optimization in BA can be used as well to optimize the GEA
cost error. Amongst them, exploiting the sparsity of the Ja-
cobian of the cost error [5, 9], or using preconditioned con-
jugate gradient to solve the second level system [1].

3. GEA-based motion estimation
Our proposed motion estimation system combines a live

camera tracking process with a long-term drift error cor-
rector. The live process estimates the camera pose for new
input frames from the video sequence using an image point
tracker such as KLT [2]. It also updates the reconstruction
with new key-frames, corrects initialization errors using an
incremental version of GEA, and performs loop-closing de-
tection using a fast image descriptor matching.

Once a new loop-closing matching is found, the long-
term error corrector is launched in a different thread. This
process corrects drift errors using a version of the GEA op-
timization specially accelerated for this kind of live recon-
struction problems. When this optimization finishes, the
camera tracking at the live process is updated, and the long-
term error corrector thread is destroyed.

Both processes, short and long term tracking are struc-
tureless versions of the tracking and mapping processes
from the PTAM system [8] respectively. In this case they
are more decoupled, in the sense that success of the live
process does not depend on the long-term drift error correc-
tor to eliminate camera resection errors. Camera resection
errors are corrected on the main process without having a
global reconstruction correction running constantly in the
background.

The following two subsections describe the camera
tracking and long-term error correction processes in detail.

3.1. Short-term camera tracking

The problem of short-term camera tracking is well stud-
ied, and to some extent can be considered solved [4]. We
use an incremental approach such as [5] to estimate the
camera pose for every frame of the video sequence.

In incremental SfM, certain key-frames are registered in
the reconstruction during the tracking. These key-frames
should have a minimal base-line distance between them, so
the reconstruction does not contain redundant views, and
the structure is well constrained. Traditional SfM systems
also keep and update the 3D location of the image features
detected at the scene. For large tracking sequences, this
structure can contain from thousands to hundred thousands
of 3D points.



To resect the camera pose for new input frames during
the tracking, our system stores only a reduced set of 3D
points (about 100-200 points) corresponding to image fea-
tures detected at the most recently registered key-frames.

The actual frame is added as a key-frame in the recon-
struction when a sufficiently large baseline is detected be-
tween the actual camera pose and the most recently regis-
tered key-frame. Then, an incremental GEA optimizes the
last nc key-frames in the reconstruction. With these few op-
timized camera poses a new set of 3D points is estimated to
resect camera poses for new input frames.

This prevents future camera resection errors, hence it im-
proves the success rate of the tracker [5]. It is typically
sufficient to optimize a number of nc = 10 key-frames to
avoid most tracking failures, and this optimization can be
performed in real-time.

Each time a new frame is added in the reconstruction,
the tracker compares this new key-frame with older key-
frames, to find loop-closing correspondences. The simple
image matching technique described at [3] obtains a single
image descriptor for each key-frame, and compares them to
find image matchings.

Once a possible matching is found between two images,
a RANSAC search looks for image point matchings. If
a sufficient amount of point matchings was detected, the
tracker evaluates the reduced matrix from the point match-
ings detected, and includes it in the GEA cost error.

3.2. Lightweight GEA for drift error correction

When new loop-closings are detected the tracker uses
GEA to correct the camera poses for the key-frames in the
reconstruction.

The GEA optimization can be accelerated by discard-
ing terms in the GEA cost error function Ce (from equation
3). Our tests demonstrate that most of these terms are re-
dundant, and have little influence in the loop-closing error
reduction obtained by GEA.

We discard terms corresponding to reduced matrices ob-
tained from a small number of point correspondences. To
ensure full connectivity in the view graph, we do not dis-
card terms corresponding to key-frames which are too close
in the video sequence. This way the reconstruction will not
be partitioned into different groups which would be opti-
mized separately by GEA.

This selection involves two parameters. The parameter s
indicates the maximal distance between the two key-frames
involved in a term to be included the GEA cost error. The
parameter k indicates the maximum number of terms to in-
clude that involve views sufficiently separated in the video
sequence, and involve a large number of point correspon-
dences.

Given the set of terms from the GEA cost error
{‖Aijeij‖2}i,j=1..n, the selection will preserve those such

Figure 1. Visual comparison of the reconstruction obtained with
sSBA and GEA. SfM reconstruction of the fountain optimized
with sSBA, and optimized with GEA using linear estimation of the
3D points (top row left and right image respectively). Top view of
the Onofrio fountain at Dubrovnik (bottom image).

that |i − j| <= s. For each view v, the selection
will also preserve the k remaining terms contained in
{‖Aijevj‖2}j=1..n that involve the largest amount of point
correspondences.

4. Results
In this section we compare the performance of our GEA

implementation against sSBA [9] (which is the fastest and
more accurate state-of-the-art open implementation of Bun-
dle Adjustment available) in real-time SfM problems. We
also evaluate the suggested simplification for the GEA error
described in section 3.2.

In our tests we used the data set Dubrovnik1, obtained
with SfM techniques from unordered sets of images from
the Internet; and the data-sets boxes-8 and boxes-xl2 ob-
tained with a real-time SfM reconstruction system which
uses incremental BA to correct short-term camera tracking
errors, and performs loop-closing detection using the tech-
nique described at section 3.1.

Figure 1 shows a visual comparison of the optimal re-
constructions obtained with sSBA and GEA for the data-set
Dubrovnik. Both reconstructions represent quite accurately
the scene from the fountain square in Dubrovnik.

Figure 2 shows a comparison of loop-closing error cor-
rection performed by sSBA and the original GEA optimiza-
tion.

Figure 3 shows a comparison of the error reduction speed
obtained with the proposed improvement for GEA, and
sSBA on the data-set boxes-xl.

1Referenced in [1]
2These two data-sets are available at http://perception.inf.

um.es/gea



Figure 2. Reconstruction visualization for the data-set boxes-8
without loop-closing correction (top figure); optimal reconstruc-
tion obtained with Bundle Adjustment and GEA including loop-
closing information (left and right figures respectively, middle
row). Some frames from the video sequence boxes-8 (bottom
row).

Figure 3. Performance comparison between simplified GEA and
sSBA for the case study data-set. Data-set boxes-xl. Marks in
each curve indicate the reprojection error achieved with a given
number of iterations.

The λ parameter for both sSBA and GEA is fixed to
10−3, which shows the best error correction speed for the
sSBA algorithm. The measured performance times for GEA
do not include the evaluation of the reduced matrices, or
the posterior 3D structure updating. It is assumed that the
reduced matrices were already obtained during the camera
tracking or the loop closing detection. The value for the s
parameter, corresponding to the improved GEA algorithm
is set to 10 for these tests.

5. Conclusions

We present a real-time camera tracking system which
proves to be more scalable and efficient than traditional
SfM systems on commodity hardware (without using high-
performance hardware such as GPU).

GEA is used instead of Bundle Adjustment to optimize

the reconstruction during the tracking process. The accu-
racy obtained for the camera poses is sub-optimal, but quite
close to the best reprojection error.

Drift errors are eliminated with a simple and fast loop-
closing detection and a posterior global epipolar adjust-
ment. This paper describes a modification of the GEA error
specific for this kind of loop-closing error correction prob-
lem, that obtains significant performance speed-ups in the
optimization.

The reconstructions obtained with this system are ac-
curate enough for tasks such as augmented reality, or live
dense reconstruction.
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