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Abstract

We propose a reduced algebraic cost based on pairwise

epipolar constraints for the iterative refinement of a mul-

tiple view 3D reconstruction. The aim is to accelerate the

intermediate steps required when incrementally building a

reconstruction from scratch. Though the proposed error is

algebraic, careful input data normalization makes it a good

approximation to the true geometric epipolar distance. Its

minimization is significantly faster and obtains a geomet-

ric reprojection error very close to the optimum value, re-

quiring very few iterations of final standard BA refinement.

Smart usage of a reduced measurement matrix for each pair

of views allows elimination of the variables corresponding

to the 3D points prior to nonlinear optimization, subse-

quently reducing computation, memory usage, and consid-

erably accelerating convergence. This approach has been

tested in a wide range of real and synthetic problems, con-

sistently obtaining significant robustness and convergence

improvements even when starting from rough initial solu-

tions. Its efficiency and scalability make it thus an ideal

choice for incremental SfM in real-time tracking applica-

tions or scene modelling from large image databases.

1. Introduction

Bundle adjustment (BA) [28] is the standard postpro-

cessing technique commonly used in computer vision to

refine initial solutions obtained by different bootstrapping

methods for the classical structure from motion (SfM) prob-

lem [14]. Currently, many efficient sparse bundle adjust-

ment (SBA) software packages exist, based on well known

nonlinear minimization techniques such as Levenberg-

Marquardt (LM) [19] or Powell’s Dog Leg [18]. These

methods are able to refine a solution involving thousands of

points and hundreds of cameras to the maximum likelihood

estimation (MLE) in a well defined geometric sense, com-

puting it in just a few seconds in a standard CPU. In fact,

careful optimizations have recently allowed to even perform

a significant amount of BA in real time visual mapping sce-

narios. This has been acknowledged to largely reduce fail-

ures in tracking [7, 15] in an arguably more robust way than

strictily incremental approaches using Kalman state updates

[6] or which limit the BA to the last two or three views [31].

Moreover, with the recent success of SfM for large scale

scenes (such as extended areas of cities, for example) from

huge unordered internet photo collections [24, 2], there has

been a reborn interest in optimizing the BA process as much

as possible [16, 1].

Anyway, BA requires an initial guess sufficiently close

to the optimal solution. Otherwise, it can fall out of the

convergence basin of the reprojection error. In realistic,

medium/large scale SfM problems, direct linear initializa-

tion of all views and points at once [13, 11, 27] is problem-

atic, so an incremental approach which builds up and re-

fines the camera trajectory in sucessive steps is the de facto

standard bootstraping procedure, both in sequential systems

[8, 23, 7] and large scale object centered off-line reconstruc-

tions [25, 24, 2, 1]. These techniques tipically use BA in the

growing subproblems to prevent divergence.

In this paper we propose to substitute the reprojection er-

ror in all intermediate BA stages for an alternative cost func-

tion based exclusively on the pairwise epipolar constraints.

These constraints have been frequently used in the refin-

ing process of both structure and motion [31, 12]. In some

cases, globally consistent epipolar (or even trifocal) con-

straints have also been used in a genuine multiview frame-

work [29, 17, 26]. Our work is related to this approach, but,

in contrast with it, we focus on the computational and qual-

itative advantages of a simplified algebraic cost for the full

nonlinear optimization process:

1. Minimization is only performed for the camera param-

eters, completely discarding all variables correspond-

ing to 3D points until final refinement, thus using much

less variables in all intermediate optimizations.

2. It naturally allows to exploit the “second level” spar-

sity in the underlying linear system which arises from

the fact that not all scene features appear in all views1.

1This is related to the recent sparse-sparse bundle adjustment (SSBA)
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3. In incremental bootstrapping scenarios it reuses many

of its previous computations.

4. It shows remarkably fast convergence due to the reg-

ularization effect of the early elimination of structure

variables in the optimization. Tipically only two or

three iterations are required for stabilization. Further-

more, the LM parameter λ, which must be adaptive in

standard BA, can be maintained fixed.

Refining approaches are sometimes classified as unifying

vs. decoupling techniques [12]. Minimization of reprojec-

tion cost as in traditional SBA falls in the first class, trying

to simultaneously optimize motion and structure. In con-

trast, we propose a decoupling approach based on a global

epipolar cost function in which we first optimize only the

motion parameters (i.e, position and orientation of the cam-

eras), eliminating the 3D points. Triangulation is only per-

formed at the end of the procedure, once the cameras have

been fully refined, so our approach is essentially different

from iterative intersection-resection [3].

The structure of the paper is as follows. In §2 we give

a brief overview of bundle adjustment. Then §3 describes

the proposed global epipolar cost function, while §4 em-

phasizes its computational advantages. In §5 we briefly dis-
cuss how to integrate this cost in a full incremental SfM

system, and in §6 we experimentally study the convergence

properties of the proposed minimization process, as well as

its computational performance. Finally, in §7 we discuss

the potential advantages, caveats, issues and possible exten-

sions of the method, while §8 sumarizes the main conclu-

sions of our study.

2. Sparse Bundle Adjustment

The maximum likelihood solution for structure and

motion requires minimization of the geometric reprojec-

tion error of the observed image points. This is a

high-dimensional, strongly nonlinear optimization prob-

lem, which can be successfully solved using the Levenberg-

Marquardt (LM) method to iteratively refine an initial so-

lution [28]. If ~f is the vector of residuals with Jacobian

J , then the cost C = 1
2
~fT ~f can be approximated by a

quadratic function with gradient ∇C = J ~f and Hessian

H ≃ JTJ (Gauss-Newton approximation). Therefore the

correction ∆x for the current solution is given by:

H∆x = −∇C ⇒ JTJ∆x = −JT ~f (1)

The LM algorithm adaptively adds a scalar λ to the diag-

onal of the H matrix, in order to ensure that the cost func-

[16], but SSBA needs to previously eliminate structure variables using the

Schur complement, while our proposed cost directly builds the sparse hes-

sian matrix without ever using the 3D points.

tion diminishes in each step even if the quadratic approxi-

mation is not valid [28, 7, 19].

General purpose LM implementations based on dense

matrix algebra are not appropriate for SfM problems due

to the high sparsity of the Jacobian, caused by the lack of

interaction among parameters for different 3D points and

cameras (each observed point depends only on a very small

number of the total set of parameters). The standard ap-

proach to circumvent this problem is taking advantage of

the block-diagonal structure of the Hessian associated to the

points to reduce the full system of equations to a smaller

one depending only on camera parameters using the Schur

complement trick [1, 7].

In most practical situations points are seen only in small

subsets of images, so the reduced camera system is also

sparse [7]. Recent implementations like sSBA [16] exploit

this second level of sparsity to achieve significant perfor-

mance improvements. As it will be shown in the next sec-

tions, this will also be the case in our approach.

3. Global epipolar optimization

The global geometric epipolar cost can be defined as:

Cge =
∑

p

∑

i[p]

∑

j 6=i

d(x
(p)
i , Eij x̂

(p)
j )2 (2)

where d(x, l) is the Euclidean distance from a point x to a

line l, Eij is the Essential Matrix of the i-j view pair, x
(p)
i

is the observed image point p in view i, x̂
(p)
i is the estimated

image of point p in view j, and i[p] is the set of views i con-
taining point p. (For simplicity we describe the fully cal-

ibrated situation, but the method could be easily extended

to estimate also the internal parameters.) A simple approxi-

mation to this cost can be obtained if the epipolar lines arise

from the observed x
(p)
i instead of the estimated x̂

(p)
i . In this

case we can only include the epipolar lines induced by the

available views j[p]. The empirical geometric epipolar cost

is defined by:

Cege =
∑

p

∑

i[p]

∑

j[p]

d(x
(p)
i , Eij x

(p)
j )2 (3)

The approximation is good for realistic levels of noise

and track lengths. This objective function can be further

simplified if the epipolar distance is replaced by the alge-

braic cost of the constraint. Grouping the visible points

p[i, j] in each pair of views we can define the global al-

gebraic epipolar cost as:

Ce =
∑

i,j

∑

p[i,j]

(

x
(p)T
i Eij x

(p)
j

)2

(4)

Since the method is used for refinement of an initial solu-

tion not very far from the optimum one, this algebraic cost
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can be made closer to the geometric one by means of ad-

equate normalization and scaling of the input data, as dis-

cussed in the next section.

The proposed cost function has a particularly simple

structure for Levenberg-Marquardt optimization. Each

point p visible in views i and j induces a component in the

cost function that can be expressed in terms of the rotations

Ri, Rj and translations Ti, Tj of the cameras:

x
(p)T
i Eij x

(p)
j = x

(p)T
i Ri

[

Tj − Ti

||Tj − Ti||

]

×
RT

j x
(p)
j (5)

(Division by the norm of Tj − Ti prevents convergence to

the trivial solution Tj = Ti.)

The rotations can be parameterized by four elements of

a quaternion, or by the three incremental Euler angles from

the initial position. In any case, most of the computations

required for the Jacobian of the above expression are very

similar to the ones that are required for the camera parame-

ters in standard BA. The Jacobian of the epipolar cost con-

tains O(Nl) nonzero blocks (or at mostN × (N − 1) in the
fully connected case; see figure 1 left), whereN is the num-

ber of cameras and l the average track length, and depends

only on the camera parameters, while the Jacobian of SBA

containsN ×P ×2 blocks, where P is the mean number of

points visible in each image. The 3D points do not appear

in the optimization, though, if required, can be triangulated

in a final stage from the optimal camera positions.

Notice that the H matrix corresponding to the proposed

cost will have exactly the same sparsity pattern as the coeffi-

cient matrix of classical SBA after elimination of 3D points

by the Schur complement trick: views not related by point

correspondences will invariably produce zero blocks in the

Hessian2 (fig. 1 center, right). It is also important to note

that the update equation (1) for the proposed algebraic error

depends only on the camera parameters, so there is no need

to perform any Schur complement to obtain a reduced ma-

trix. In the next section we will see how to further reduce

the computation, by shrinking the size of the jacobians.

4. Reduced measurement matrices

Each term x
(p)
i Eijx

(p)
j in equation 4 can be rewritten as

the dot product of two R9 vectors,m
(p)T
ij eij , wherem

(p)
ij =

2This sparsity can also be exploited by using a solver for sparse linear

systems. In this work we have used the sparse LDL [9] decomposition in

the Intel Math Kernel Libraries (MKL). Nevertheless, as will be discussed

in §7, the iterative Preconditioned Conjugate Gradient (PCG) method [22]

could be a better choice. The second level sparsity is not taken into account

in some SBA implementations [7, 19], the iterative PCG approach is used

in others [1], and some recent advances in direct Cholesky sparse linear

systems [5] are used in [16] and also in [1]. In any case, due to the identical

structure of the respectiveH matrices, any of these improvements could be

used to equally speed up the linear equation solving step in our approach.

Figure 1. (Left) Sparse block structure of Jacobian and Hessian

matrices for the proposed error function. (Right) Hessian matrix

for the dinosaur dataset (§6).

x
(p)
i ⊗ x

(p)
j and eij contains the elements of the matrix Eij ,

normalized as in eq. 5. Equation 4 can then be rewritten in

terms of the matrices Mij whose rows are the vectors m
(p)
ij

corresponding to views i and j:

Ce =
∑

i6=j

‖Mijeij‖2 =
∑

i6=j

eTijM
T
ijMijeij (6)

We can obtain a numerically equivalent version of this

expression by replacing the matrix Mij (of size nij × 9,
where nij is the number of point correspondences between

the views i and j) for a smaller upper triangular matrix

M̂ij of size 9 × 9 computed from the QR decomposition

of Mij (or, equivalently, from the Cholesky decomposition

of MT
ijMij), so that:

MT
ijMij = M̂T

ijM̂ij (7)

The reduced measurement matrix M̂ij offers several ap-

pealing computational advantages against Mij . First, its

size is 9×9, independent of the number of point correspon-

dences nij . Its memory footprint is much smaller (only 45

nonzero entries), and it largely decreases the computational

cost of the components in the epipolar error function.

We precompute the reduced matrices M̂ij before start-

ing the optimization. In this stage the homogeneous cali-

brated observations x
(p)
i are scaled to unit norm, and each

row m
(p)
ij in the original Mij could optionally be weighted

according to the initial Eij to improve the geometric mean-

ing of the cost. There are several ways to accomplish this

effect [21], but our experimental results were not signifi-

cantly better using this kind of additional prenormalization.

4.1. Numerical Rank Properties

Besides the performance advantages, the reduced matrix

also offers useful information for the reconstruction. Rea-

soning on its theoretical rank for different ideal, noise-free

configurations of cameras and points, information about
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possible degenerate input configurations, presence of out-

liers and noise level magnitude can be inferred from the sin-

gular values of M̂ij . Let us ellaborate a bit on this. If we

assume that the aforementioned unit norm scaling of each

x
(p)
i has been performed, then the following property al-

ways holds on the singular values of each M̂ij :

||M̂ij ||2F = ||Mij ||2F =
∑

k=1...9 s2k = nij ⇔

||s̄|| = 1, s̄ = ( s1√
nij

, . . . , s9√
nij

)
(8)

Where ||.||F stands for the Frobenius norm, sk are the

nine singular values of M̂ij sorted in descending order, and

s̄ is the corresponding vector with module normalized to

one. Given this, we can infer the following properties on

the geometric configuration of this pair of views from the

values of s̄k = sk/
√
nij , assuming that nij > 8:

1. In a noise free general position of cameras and 3D

points, the theoretical rank for M̂ij is eight, so s̄9
should be zero. In a real situation, therefore, if this

value is above a given security threshold, we can as-

sume that there are outliers in the input matches.

2. Otherwise, s̄9 can still give us an idea of the noise level
of the input, with values closer to zero giving us best

view pairs (in terms of average projection noise).

3. For pure rotations (coincident camera centers), as well

as for image pairs with all matching points coplanar in

the 3D scene, there exists a homography relating the

corresponding projections. In this case, the theoretical

rank for M̂ij is six, so s̄7 (and, of course, also s̄8 and

s̄9) should be zero. In practical situations, thus, small

values of s̄7 can be used to detect potentially ill condi-
tioned pairs to get an initially correct (up to scale) 3D

reconstruction from the estimated essential matrix.

4. Further zeroes on s̄i for i <= 6 would indicate still

more degenerate input configurations, such as all 3D

points contained in a 3D line. This is perhaps less in-

teresting from a practical point of view, as such situa-

tions should be rather infrequent in practice.

The above properties can be used as a guide to choose

best image pair candidates to bootstrap a global reconstruc-

tion, much in the same spirit of [25]. In our case, how-

ever, we use information directly extracted from the corre-

sponding reduced measurement matrices, instead of having

to completely estimate the uncertainty associated to each

pairwise reconstruction.

5. Application in a full SfM system

We have tested the proposed cost function in an incre-

mental SfM system similar to the one described in [24] and

used in [2] to successfully build large 3D reconstructions.

In the first step a standard keypoint matching algorithm

is used to obtain point correspondences. At this point we

also compute the reduced measurement matrix for each pair

of views. This initialization task is evaluated only once,

independently of the number of iterations required by the

posterior optimization procedure.

The next step obtains an initial two-view reconstruction.

We take advantage of the rank properties of the reduced

measurement matrix to select a well conditioned view pair.

We look for a pair with low s̄9 to ensure that the epipolar

constraint is accurately satisfied, and with high s̄7 to avoid a
degenerate geometry configuration due to planarity or small

relative baseline. This makes unnecessary to estimate a pla-

nar homography between the image pairs as is suggested in

[24]. Alternatively, an initial reconstruction with more than

two cameras can be computed from the reduced measure-

ment matrices using the technique described in [10].

Given a partial reconstruction, the algorithm iteratively

resects new cameras, triangulates new points, and refines

each augmented reconstruction using bundle adjustment to

prevent divergence. In our implementation these intermedi-

ate refinement steps use the proposed epipolar cost to sig-

nificantly accelerate the whole process.

A final refinement step using the standard reprojection

error is performed to obtain the MLE solution. Since the

bootstrap solution is very close to the optimum this last pro-

cess requires very few LM iterations.

6. Experimental evaluation

In our experiments for testing the different optimization

methods we used several datasets, each one containing a set

of initial camera locations and 3D points (the latter not re-

ally being used by our proposal), and the corresponding im-

age projections (measurements). The initial solutions were

obtained by standard SfM techniques. Some databases cor-

respond to real video sequences: dinosaur3, corridor4, and

maquette5 [19], and others are taken from large internet un-

ordered photo collections [1]6.

6.1. GEA vs SBA convergence

We performed several tests to compare precision and

convergence rate of epipolar and reprojection error. For

these first group of tests we used our implementation (GEA,

3Thanks to Wolfgang Niem, University of Hannover.
4Oxford’s VGG group, http://www.robots.ox.ac.uk/

˜vgg/data/data-mview.html.
5http://www.ics.forth.gr/˜lourakis/sba
6http://grail.cs.washington.edu/projects/bal/
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for Global Epipolar Adjustment), and the Lourakis and Ar-

gyros SBA package (laSBA) [19], perhaps the most tested

freely available implementation for classical BA.

We evaluated the best reprojection error obtained using

laSBA, GEA, and the number of iterations that each algo-

rithm required to achieve it. We also evaluated the error and

number of iterations obtained by laSBA when starting from

the best GEA solution (label Both = GEA+SBA).

Table 1 summarizes the results. The stopping criteria

used to consider that the algorithms have reached the op-

timal solution was to evaluate the relative decrement in the

reprojection error obtained after each iteration. We show re-

sults for a typically used such decrement value, τ = 10−2.

We corrected any camera distortions (linear, radial) from the

measured point projections before evaluating the respective

error values, so all the residuals are shown after being trans-

formed to an euclidean frame (instead of pixel units).

Reprojection error Iterations

Dataset Init. SBA GEA Both SBA GEA Both

maquette 5.30e-4 3.49e-4 3.78e-4 3.62e-4 13 3 2

corridor 9.19e-3 1.08e-3 9.81e-4 9.37e-4 18 3 2

dinosaur 2.63e-2 4.01e-4 3.97e-4 3.91e-4 51 3 2

trafalgar-21 2.26e-3 7.07e-4 1.00e-3 7.16e-4 15 4 13

dubrovnik-16 3.53e-3 1.47e-3 1.62e-3 1.59e-3 19 3 2

Table 1. Optimal reprojection errors and convergence rates. The

reconstruction provided by the dataset is used for initialization.

For a more comprehensive evaluation of the respective

convergence basins, we additionally performed a second

group of tests on artificially corrupted datasets. Starting

from the optimal SBA solution of each problem, we cor-

rupt the camera poses slightly, gradually varying their lo-

cation and pose angle. We use then a linear algorithm to

triangulate the 3D point locations with these new camera

poses, and reevaluate the convergence rate (best reprojec-

tion error and number of iterations performed to reach it) of

laSBA and GEA to their respective optimal solutions. Fig-

ure 2 show these results. Again, we also evaluate here the

error and number of iterations obtained by laSBA, when ini-

tialized from the best GEA solution.

In general, the results of these convergence tests indicate

that (a) GEA requires less iterations than laSBA to reach

its optimal reprojection error, (b) a small number of SBA

iterations suffice to obtain the best SBA solution starting

from the GEA optimal solution, and (c) the convergence

basin of SBA is significatively smaller than that of GEA,

which is able to recover the correct solution starting from

much larger initial reprojection errors7.

7Notice that the breaking point of SBA, beyond which it will not be

able to converge back to the correct solution, is always below ten times

the optimal solution reprojection error, while GEA still converges to the

correct solution from much more imprecise initial solutions (fig. 2 left).

Figure 2. Convergence comparison between GEA and laSBA with

artificially corrupted reconstructions. Vertical axis show best re-

projection error obtained in logarithmic scale (left column), and

the number of iterations required to reach it (right column), for the

datasets corridor (upper row) and maquette (lower row). Horizon-

tal axis represents the logarithm of the initial reprojection error.

6.2. Performance evaluation

We also compared the computational cost of our GEA

implementation and, in this case, the sSBA package [16].

The sSBA is a recent BA implementation which offers state-

of-the-art performance on large datasets, by solving the sec-

ond level linear system using the CHOLMOD package [4].

Our GEA implementation uses the Intel Math Kernel Li-

brary (MKL) for that purpose. Both packages can use di-

rect sparse Cholesky factorization as well as iterative PCG

methods for solving the involved sparse system.

Table 2 summarizes the computing times per iteration

obtained on the evaluated datasets for sSBA and GEA8.

The columns labelled Solve correspond to the time spent

in solving the second level system, using in this case the di-

rect sparse methods from the MKL (GEA) and CHOLMOD

(laSBA) respectively. The peformance of these solvers

varies depending on the size and structure of the sparse ma-

trices. MKL is faster when solving larger sparse systems,

being as it is optimized for Intel architectures, but it tends

to be slower in smaller systems, where it relatively spends

more time initializing its internal data structures9. Columns

labelled Rest include the rest of stages by iteration in both

algorithms (compute respective cost functions, jacobians,

and hessians, setup of coefficient matrix for the solver, and

8All tests were performed on an Intel Xeon 2Ghz single core.
9In any case, this is not the point here, as both GEA and sSBA would

presumably consume approximately equal computing times in this stage

when using the same direct solver implementation, because, by construc-

tion, both hessians have exactly the same sparsity structure.
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update of the solution). Finally, columns RM and LT in

GEA refer to initial reduced measurement matrices com-

putation and final linear triangulation, respectively. Thus,

the formula TsSBA(n) = n × (SolvesSBA + RestsSBA)
would model the time spent in practice by sSBA to opti-

mize a given dataset on n iterations, while the correspond-

ing time for n iterations of GEA would be TGEA(n) =
RM+n×(SolveGEA+RestGEA)+LT (because comput-

ing of the reduced measurement matrices and the final linear

triangulation of points must be performed only at the begin-

ning and at the end of the GEA procedure, respectively).

To further clarify the computational advantages, Fig. 3

shows a detailed analysis of the number of iterations and

overall computing times spent by both techniques vs. the

achieved reprojection error in dubrovnik-135, an average

size database. GEA obtains very good approximations to

the optimum in much less time. Furthermore, the comput-

ing times for the proposed cost have been obtained with an

unoptimized C++ prototype implementation, with priority

on readability and ease of development instead of perfor-

mance (unlike laSBA and sSBA, which are carefully imple-

mented to exploit memory locality in the setup and compu-

tation of the involved matrices [19, 16]). In spite of this,

for typical number of iterations needed by SBA and GEA

(§6.1) we can see a clear advantage in favor of the latter.

Problem size sSBA GEA

Dataset #Cams #Pts #Projs Rest Solve RM RestSolve LT

trafalgar 50 20431 73967 223 6 67 12 20 296

trafalgar 126 40037 148328 516 79 158 40 101 588

trafalgar 256 65132 225700 797 997 282 105 331 957

dubrovnik 88 64298 383937 1771 29 746 47 88 1000

dubrovnik 135 90642 553336 3019 93 1341 104 216 1442

dubrovnik 356 226730 1255268 7024 4351 2977 479 1567 3442

ladybug 138 19878 85217 347 101 166 72 187 293

ladybug 460 56811 241877 1350 12250 639 458 1942 879

ladybug 1031 110968 500265 3372 34180 1437 982 6427 1718

venice 52 64053 347173 1438 7 645 18 24 976

venice 89 110973 562976 2415 30 1086 51 97 1654

venice 245 198739 1091386 6596 604 2837 285 738 3060

venice 427 310384 1699145 1238714480 4708 736 2445 4871

Table 2. Performance times (milliseconds) of sSBA and GEA.

6.3. Robustness to varying λ in the LM algorithm

Finally, we evaluated the tolerance on the selection of the

damping factor λ for both GEA and SBA algorithms. The

sSBA implementation lets us specify this value, so we used

it again in this last set of tests. To avoid eventual increase of

the cost in some iteration, SBA must dinamically tune the λ
parameter. In this case, we tested the influence of this pa-

rameter using both a direct and an iterative PCG solver for

solving the sparse system of GEA and SBA, respectively.

As shown in fig. 4, GEA convergence rate is independent

of λ10, while SBA shows a clear local minimum in both

10In practice we always use a small fixed value of λ = 10
−3, just to

ensure positive definiteness of the coefficient matrix.
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Figure 4. Reprojection error obtained after applying one iteration

of GEA and the sSBA implementation, solving directly the second

level system, or applying 10 conjugate gradient (CG) steps. The

horizontal axis in these figures represents the initial λ value used

in the iteration. The vertical axis represents the reprojection error

obtained in one iteration. The datasets used are: dubrovnik with

16 cameras (left), and trafalgar with 21 cameras.

datasets and both types of solvers. This seems to corrobo-

rate the fact that the proposed cost behaves much more regu-

larly (i.e., its quadratic approximation in the neighbourhood

of the solution is better) than the SBA geometric reprojec-

tion error, which works on a much larger parameter space.

7. Discussion

In this section we discuss some important implications

and further research lines raised by the proposed approach:
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Alternative cost functions: The algebraic cost used in

this work (eq. 4) is obviously not the only alternative. There

are other more geometrically motivated costs, such as sym-

metric transfer error or the Sampson error [20, 30, 14, 21].

These simplified geometric costs would only slightly com-

plicate the computation of the Jacobian, while still allowing

early elimination of the 3D points in the optimization. In

any case, our results with these costs show only marginal

advantages with respect to the pure algebraic error, as al-

ready noted in the two views case11 [14]. We discard the

gold-standard epipolar geometric error (eq. 2), as it would

need the 3D points in the optimization, thus throwing away

the main computational advantage of the proposed cost.

Elimination of camera pairs: Another opportunity for

optimization comes from the fact that the reduced matri-

ces M̂i,j corresponding to image pairs with a lot of matches

will have much more impact in the global cost function than

those corresponding to pairs with only a few. Nevertheless,

every image pair contributes with the same weight to the

global computational load (9 additional rows in the Jaco-

bian). We have experimentally found that eliminating pairs

with very few matches does not affect the obtained solution

in an appreciable way. The analysis of the views graph to

eliminate irrelevant image pairs from the Jacobian in inter-

mediate stages of optimization in large problems will also

be subject of future research. Since the Hessian has ex-

actly the same block structure as the adjacency matrix of the

views graph, this kind of optimization will also generate a

more sparse system of equations (1), which could therefore

be solved faster using the adequate sparse solving methods.

Reprojection error vs. epipolar cost in presence of point

tracking failures: Minimizing reprojection error is the

best alternative when we are sure that each track corre-

sponds to a phisically different 3D point. But consider what

happens when the tracker fails to detect an interest point for

a few frames, generating two or more different tracks for

the same 3D point (something frequent in real-time track-

ing systems). This provides additional degrees of freedom

to BA to reduce the global reprojection error by artificial

separation in space of the estimations of the common 3D

point. Our experiments on synthetic data suggest that the

epipolar cost is more stable against “track cuts” than stan-

dard BA, as only relative positions of the views induced by

the matches (and no physical 3D points) are used in the op-

timization, showing a benign regularization effect.

Sufficient parallax: As already noted in [21], we have

experimentally checked that even for purely rotational mo-

tions, the spurious artificial translation created by image

noise is sufficient for correctly estimating the relative ro-

tation between views, while the translation automatically

11A slight bias of the algebraic cost to “push” the epipoles towards the

image center has been reported in [30].

converges to a very small magnitude with an arbitrary di-

rection. Thus, no particular care is in practice needed with

the base-line between views in the map, other than avoiding

the initialization of any pair of optical centers with exactly

the same 3D position to prevent division by zero in (5).

Incremental optimization: One of the more interesting

research topics raised by the proposed approach is incre-

mental operation. In order to reestimate the optimal solu-

tion for the N + 1 view, we only have to add a new column

to the Hessian obtained for the previous N views, coming

from justO(2Kl) nonzero new subblocks in the updated Ja-

cobian, being l the average track length and K a bound on

its standard deviation. Since the Hessian will remain rather

sparse and the previously refined solution is a good start-

ing point, an iterative sparse solver based on the precondi-

tioned conjugate gradient method will expectedly solve the

new system of equations faster than a general solver based

on complete Cholesky or LDL decomposition. Note also

that all the previously computed M̂ij matrices for the rest

of views will in any case be reused without ever needing

to recompute them. In the bootstrap process of building an

incremental solution for large problems, all these facts re-

sult in a valuable computational advantage; in real time sys-

tems, on the other hand, though we will have to eventually

freeze the oldest views and reestimate only the most recent

ones (as usual in these kind of systems [7]), the number of

free views that can be reestimated in the allocated time will

probably be much larger than in standard BA.

Convergence speed: The experiments presented in §6
show that convergence of the GEA algorithm is faster than

that of BA implementations. Two or three iterations are usu-

ally enough to get a solution very close to the optimum,

while full BA require more iterations and approaches more

gradually to the solution. The geometric reprojection er-

ror is not quadratic and therefore convergence is slow due

to cross-sectional local minima [13]. In contrast, the pro-

posed epipolar cost, without structure variables, has a much

wider, regularized convergence basin suitable to Newton

minimization and tolerant to imprecise initialization.

Limitations: The proposed approach has also some draw-

backs. For example, line features do not impose constraints

on a view pair, so they cannot be easily included in the

epipolar cost. Also, exact treatment of the uncertainty ellip-

soids in the algebraic cost (as in [19]) may not be compat-

ible with the computational advantages of the reduced cost

(anyway, under the simplification of varying isotropic un-

certainty we could still assign an appropriate scalar uncer-

tainty value to each pair of matching points, in order to con-

vert eq. (6) in an ordinary weighted least squares problem).

Finally, there is also a critical situation for the epipolar cost,

which consists of “isolated chains” of views with collinear

centers without links to other views in the “core” of the view
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graph. This would add undesired degrees of freedom in the

cost function, preventing correct estimation of the scale in

their relative baselines. This problem should be detected

and fixed postponing the estimation of those views to a last

stage, when structure is already available.

8. Conclusion

We have proposed a global epipolar cost function to re-

fine incremental SfM solutions, as a more efficient alter-

native to the sum of individual reprojection errors used in

classical SBA approaches. With better convergence proper-

ties, due to early elimination of 3D points in the optimiza-

tion, this cost function gets solutions remarkably close to

the BA optimum in terms of geometric error, safely keeping

the incremental reconstruction from eventual divergence at

any step. The final solution needs only an ultimate refine-

ment at the very end, with two or three additional iterations

of the traditional joint estimation of all the views and 3D

points available in the classical SBA framework. Our pre-

liminary results, though still obtained with an unoptimized

implementation, show that the approach is particularly in-

teresting for global refinement of the estimated motion and

3D world in real-time systems. We have also discussed a

number of promising improvements and possibilities of op-

timization which are currently the subject of our research.
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