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Problem:

Bundle Adjustment (BA) is usually the main performance bottleneck in
Incremental SfM.

Proposal:

Complement BA with a previous gobal epipolar adjustment (GEA): GEA
optimization provides a map very close to the BA optimal configuration,
requiring less BA iterations to reach the optimal.

Simplified algebraic epipolar cost has computational and qualitative
advantages for fast/real-time performance. Prior data normalization
approximates the algebraic cost to geometric; in practice algebraic cost
offers a competitive trade-off between performance time and error
reduction.

1. Global epipolar cost error
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E - Essential matrix for epipolar geometry between views i and J.

p - 2D feature tracking for 3D point.
R, T. » Rotation matrix and center vector for the i-th camera.

3. Reduced measurement matrix

Algebraic cost (computational advantages):
d(x;, Bi;x;) = QZ;-FE?;jfL‘j — mg;eij
where e, — vectorization of matrix E,.. Error C_, becomes:
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Cholesky decomposition of matrix Q = M™ provides upper triangular
matrix L, , equivalentto M_ for evaluation of cost function C:

MM =Q=L"L

Each L, IS computed once for each view pair, and reused in subsequent
iterative StM steps substituting matrix M_, in the evaluation of C_.

2. Global epipolar adjustment

SfM map optimization:

(1) Initialization: computation of new view-pair epipolar constraints.

(2) Levenberg-Marquart optimization: find optimal value for the
epipolar cost C... (iterative, on cameras only).

(3) Structure computation: linear estimation when 3D points needed.

(4) Bundle Adjustment: final polishing of geometric reprojection error.

4. Levenberg-Marquardt optimization

— 3D point coordinates not needed: only 2D view-pair relations. No
Schur complement required to eliminate 3D point parameters from
the LM second level system.

— Degrees of freedom of the cost function: 6 X #cams.
— GEA Hessian sparsity structure is equivalent to that obtained in BA.
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v . . dinosaur dataset.
Jacobian ﬁ Block size: 6x6.

Block size: nx6, 9x6 after reduction.

5. Results
Performance in milliseconds. Solve step uses CHOLMOD (sSBA) and MKL (GEA):.
Set size sSBA GEA

RM - Reduced measurement
matrix estimation.

Rest + Solve — Iteration step.

Dataset |[#Cams #Pts| Rest Solve | RM RestSolve LT
trafalgar | 256 65k | 797 997 | 282 105 331 957
dubrovnik| 356 227k| 7024 4351 |2977 479 1567 3442
venice 245 199k| 6596 604 (2837 285 738 3060
venice 427 310k(1238714480(4708 736 2445 4871

LT — Linear estimation of 3D
structure (points).

Optimization of unstructured data-sets:

Error reduction vs
performance time

Real SSBA GEA

Original SSBA GEA

Also, convergence basin of GEA is significantly larger, able to recover the correct
solution from surprisingly large initial reprojection errors (see Fig. 2 in paper).

URL: http://perception.inf.um.es/gea
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